Fluid dynamics refers to the study of fluid in motion. It includes fluid moving through pipes, measurements with venturis and orifices, and other motion-related topics such as lift and drag, and pumps. Reference The field of fluid dynamics is a subcategory of fluid mechanics. It’s sibling is fluid statics. In practice, the field of fluid […]

## How to calculate Turbulent Flow

Turbulent flow is rough and choppy. Turbulent flow is the opposite of laminar flow, which is straight line flow. In pipelines, laminar flow occurs when Reynolds number is greater than 4,000. $latex R_e > 4,000&s=2$ If a stream of dye is inserted into the flow and it disperses and mixes, the flow is turbulent. When […]

## How to determine Laminar Flow

Laminar flow is smooth flow in a straight line. Laminar is the opposite of turbulent flow. In pipelines, laminar flow occurs when Reynolds number is less than 2,100. $latex R_e < 2,100&s=2$ If a stream of dye is inserted into the flow and it continues in a straight, unbroken line, the flow is laminar. Flow […]

## How to Calculate Reynold’s Number

The Reynolds number of a fluid is a dimensionless constant which allows you to determine whether the flow of a fluid is laminar or turbulent. It represents the ratio of inertial forces to viscous forces in the fluid. $latex R_e = \frac{inertial forces}{viscous forces}&s=2$ The equation is: $latex R_e = \frac{D_ev}{\upsilon}&s=2$ Where: De = Hydraulic […]